The branching problem in generalized power solutions to differential equations

نویسنده

  • Alejandro S. Jakubi
چکیده

Generalized power asymptotic expansions of solutions to differential equations that depend on parameters are investigated. The changing nature of these expansions as the parameters of the model cross critical values is discussed. An algorithm to identify these critical values and generate the generalized power series for distinct families of solutions is presented, and as an application the singular behavior of a cosmological model with a nonlinear dissipative fluid is obtained. This algorithm has been implemented in the computer algebra system Maple.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized H-differentiability for solving second order linear fuzzy differential ‎equations

In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...

متن کامل

Solution of the first order fuzzy differential equations with generalized differentiability

In this paper, we study first order linear fuzzy differential equations with fuzzy coefficient and initial value. We use the generalized differentiability concept and apply the exponent matrix to present the general form of their solutions. Finally, one example is given to illustrate our results.

متن کامل

New study to construct new solitary wave solutions for generalized sinh- Gordon equation

In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.

متن کامل

On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method

In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2004